CHALMERS

Procedural Generation of Indoor Environments

ALEXANDER DAHL
LARS RINDE

Master's Thesis

CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering
Division of Computer Engineering

Goteborg 2008

All rights reserved. This publication is protected by law in accordance
with “Lagen om Upphovsratt, 1960:729”. No part of this publication
may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior permission of the authors.

00 Alexander Dahl, Lars Rinde, Goteborg 2008.

Abstract

During the last few decades, computer games and simulations have grown in
complexity almost as fast as the capabilities of hardware have increased. Be-
cause of this, there is an ever greater need for large-scale 3D environments and
content to fill it, but it is also becoming unfeasible to manually create all this
content. This means that methods for procedural content creation will need to
take a larger role as demands on the size and richness of virtual worlds continue
to rise.

This Master Thesis describes the development of a new algorithm for proce-
dural generation of interior spaces, with the goal of providing a solid foundation
for future deployment in real-time applications such as games. The developed
algorithm uses an hierarchical subdivision process which supports an on-demand
creation of data, which means only regions that are visible need to be generated.
Additionally, because of independence between subdivided spaces, later stages
of the algorithm can be efficiently parallelized.

Further, a prototype implementation of the core mechanics of this algorithm,
in the form of an interactive interior generator, is described. This implementa-
tion is focused on the generation of apartment buildings. The report is concluded
with a look ahead at some related areas of particular interest.

Sammanfattning

De senaste artiondena har inneburit en kraftig 6kning i komplexitet for datorspel
och andra simuleringar som har varit néstan lika snabb som forbéttringar av
hardvarans kapacitet. Pa grund av detta finns det ett stindigt vixande behov
av storskaliga 3D-miljoer och innehall for att fylla dem, men det blir ocksa mer
ohallbart att producera allt detta innehall for hand. Detta innebér att metoder
for att procedurellt skapa innehall maste ta en storre del av ansvaret nar kraven
pa virtuella vérldars storlek och deras innehallsrikedom fortsatter att oka.

I denna rapport beskrivs utvecklingen av en helt ny algoritm fér att gener-
era procedurella inomhusmiljéer, med det framtida malet att skapa en solid
grund for integrering i realtidssystem som t.e.x. spel. Den hierarkiska uppdel-
ningsprocess som anvéinds ger automatiskt stod for att generera data vid behov,
dvs mojlighet att bara bygga de regioner som dr synliga. Det faktum att un-
derregioner ar oberoende gor det dven mojligt att effektivt parallellisera senare
delar av algoritmen.

Utover detta beskrivs dven den implementation av algoritmen som gjordes
i form av en interaktiv interidrgenerator. Fokus for denna applikation ligger
pa generering av bostadsbyggnader med ldgenheter. Rapporten avslutas med
en genomgang av relaterade dmnen som &r speciellt intressanta for framtida
studier.

Acknowledgments

We would like to thank Gustav Taxén, our supervisor at Avalanche, for giving us
the opportunity to study this interesting field, and for providing comments and
suggestions during our work; Ulf Assarsson, our examinator at Chalmers; Pablo
Carranza at KTH Architecture, for providing useful suggestions when we started
out. We would also like to thank our fellow Master Thesis writers at Avalanche:
Jenny, Magnus, Erik F, Rickard, Joel and Erik S. Finally, a big ’thank you!” to
our respective relatives (Astrid Ewerlof, Kerstin Laurell, Karla Ramsbéck and
Gunnar Lofgreen) who provided accommodations during our work on the thesis
in Stockholm.

Contents

1 Introduction

1.1 Background oL
1.2 Purpose e e
1.3 Scope . ..o
1.4 Method
2 Theory

2.1 Related Work oo
2.2 Architectural Theory

2.2.1 Space Syntax

2.2.2 A Pattern Language

2.2.3 S-Spaces
2.3 Voronoi Diagrams

3 Developed Algorithm

3.1 Overview e e e e
32 InputData
3.3 Building Skeleton oo
3.4 Transition Area

3.4.1 Vertical access areas
3.5 Regions e
3.6 Sub-regions (Apartments)
37 Room Walls
3.8 Room Type Allocation and Entrypoints

4 Prototype Implementation

4.1 Initial Considerations
42 Input Data
4.3 User Interface
4.4 Script Interfaceo oL Lo
4.5 Results. e e

5 Discussion

6 Further Development

6.1 Improvements L Lo
6.1.1 Rules and parameters
6.1.2 Randomization
6.1.3 Performance,

iii

=W W W

o 00 O O Ut ot N

29
29
29
30
30
30

33

iv CONTENTS

6.2 Future Work oo
6.2.1 Integration with building generators
6.2.2 Generalization to cover other building types
6.2.3 Generation of auxiliary data.
6.2.4 Automatic placement of furniture and decorative items
6.2.5 Integration with level design tools
6.2.6 Movement and space in simulated versus real interior en-

vironments L0l o oo
6.2.7 Automatic texturing of interiors

Bibliography
A Prototype Design

B Additional Results

37

37
37

39

41

45

Definitions

Building skeleton A structure derived from the outer walls, representing the
general shape of the building.

Concave corner A corner that is concave when seen from the exterior, that
is a polygon corner where the interior angle is larger than 180 degrees.

Convex polygon A polygon without any concave corners.

Corridor A transition area that allows access to different areas of a building
floor. In this thesis, this always refers to the main corridor in the house,
and never to corridors inside apartments.

Depth Used here to describe how far inside a structure a space is located,
where distance is measured in the number of spaces traversed rather than
in meters.

Region A region is generally used to describe an abstract space (an area which
will be further subdivided into smaller regions or finished rooms).

Space A space can be a region, a room, or any other area in a building. The
boundary of a space always defines a simple polygon.

S-spaces Spaces created by taking a building outline and creating walls at ap-
propriate places, mainly between windows, out from corners etc. (Peponis
et al. [1997]).

S-space skeleton A representation of the s-space walls that is used as a snap
grid.
Simple polygon A polygon encompassing a continuous area without holes,

and with no edges crossing another edge in the polygon.

Transition Area An area which is used primarily for transportation between
rooms.

Vertical Access Area An area in a floor plan which correspond to a vertical
access route, such as a staircase or elevator.

Voronoi diagram A space partitioning system using a set of seeds, and asso-
ciating every point in the space with the closest seed.

Wall skeleton A wall skeleton is a representation of the walls separating the
rooms of a region.

CONTENTS

Chapter 1

Introduction

1.1 Background

The need for large-scale realistic 3D environments has been rising rapidly as
computer games and simulations have become more and more complex. Because
this complexity often means both more detail (such as higher resolution textures
and advanced pixel shaders) and more content, artists and leveldesigners have
recieved a correspondingly higher workload. The result is that time and effort
that could have been spent on items such as important structures and areas is
now spread over all the content in a virtual environment.

1.2 Purpose

The purpose of this Master Thesis is to investigate ways of procedurally gen-
erating interior environments in order to offload work from artists and level
designers. Implementing a system for interior generation will allow virtually
infinite variation in game or simulation environments, without requiring more
work hours from content creators. The focus for the thesis has been four-fold:

e Creation of an algorithm for the generation of interiors for multi-story
buildings.

e Creation of an application showcasing this algorithm, allowing a user to
generate the interior of buildings with various shapes.

e Investigate the possibility of applying descriptions of desired outcomes
using the architectural theory Space Syntax. This should ideally lead
to an interface where a user can specify how interior regions should be
experienced, rather than how they should be layed out.

e Explore which areas are most interesting to explore in future projects
building on the work presented here.

4 CHAPTER 1. INTRODUCTION

1.3 Scope

Due to the complexity of the problem a number of limitations were introduced
during the planning phase in order to reduce the scope of the project to a
manageable size. The following main limitations were set:

e Only consider 'flat’ floors so that the problem can be initially worked on
in two dimensional space. This means floors cannot have rooms that cover
several stories (with the exception of fixed-size vertical access areas).

e Limiting the type of structures to residential buildings, ie focusing on
generating interiors which contain only apartments.

e Limiting the shape of buildings to simple polygons without holes.

e Limiting the shape of buildings to have similar or linearly changing thick-
ness throughout (ie no hourglass shapes) to allow for a single transition
area (corridor network).

e Limiting the input buildings to those that need a corridor

1.4 Method

The following steps were followed to achieve the goals set out for this Master
Thesis:

e Study existing literature on Space Syntax and other relevant architectural
theories (described in chapter 2).

e Design a high-level algorithm for generating interiors based on the results
of the literature review (chapter 3).

e Design and implement (possibly several variations of) each sub-component
of the interior generation algorithm (chapter 4).

e Evaluate results and compare to existing techniques (chapter 5).

e Produce alist of recommended further research and extensions/modifications
to the produced algorithms based on the findings of the evaluation (chap-
ter 6).

Chapter 2

Theory

2.1 Related Work

While different techniques for procedural content generation have been utilized
in games for decades (e.g. Elite [Braben and Bell, 1984]), attempts to generate
large-scale man-made 3D environments have just recently started. Despite the
current activity in this area, and the seeming abundance of projects with focus
on generation of cities [Flack et al., 2001, Greuter et al., 2003, Parish and Miiller,
2001] and buildings [Birch et al., 2001, Brenner, 2000, Hahn et al., 2006, Larive
and Gaildrat, 2006, Laycock and Day, 2003, Miiller et al., 2006, Wonka et al.,
2003], the collected body of work on generation of interior spaces is surprisingly
small [Hahn et al., 2006, Martin, 2005, Noel, 2003]. Some older ventures into
the area focus on algorithms for computer-aided design, such as Galle [Galle,
1981].

The previously cited work in interior generation have several constraints
which limits their usefulness for general applications. Noel (2003) creates rooms
within a rectangular boundary using a simplistic space splitting scheme, followed
by adjustment of the resulting walls. Hahn et al (2006) also focus on rectangular
floor plans, but use a more sophisticated splitting approach. Their results are
also limited to generating rooms with the same depth, which is unusual in most
houses. Martin (2005) takes the reverse approach, in that he generates the room
layout and the builds the exterior from that. Also, his algorithm only support
single-story houses.

2.2 Architectural Theory

The main problem with many publications within architectural theory is their
lack of scientific approach. Many of the papers and articles are simply compi-
lations of ideas from a group of individuals, or even a single author’s opinion
on a subject. This of course makes it hard to extract anything but very general
guidelines when implementing an architecture generation system. Still, there
are specific areas that show promise in this regard, and one of these is the
collection of work on the subject of Space Syntax [Hillier and Hanson, 1984,
Hillier, 2007]. The widely known (particularly in software development circles)
A Pattern Language[Alexander et al., 1977] was also consulted.

5

6 CHAPTER 2. THEORY
2.2.1 Space Syntax

Space Syntax [Hillier and Hanson, 1984, Hillier, 2007] is a collection of methods
for representing and analyzing the layout of architectural structures, from city
planning to interior floorplans. The part that is interesting for this thesis is the
analysis of the accessibility graph of a building.

The accessibility graph of a building is a graph with all rooms and other
areas (such as corridors and staircases) as the nodes, with the connecting doors
as connections between the nodes. Analysis of this graph in real houses yield
some general rules for the placement of specific rooms. For instance, private
rooms such as bedrooms are usually placed at the deepest points of the graph,
bathrooms are placed somewhat out of the way and public rooms such as living
rooms are placed with easy access to every other part of the apartment.

Figure 2.1 shows example room configurations for a building, with the nodes
of the graphs (called justified graphs by Hillier, since they can be constructed
from the point of view of any space within the configuration) representing rooms,
and connections representing doorways [Hillier, 2007]. Hillier also identifies
four types of nodes (spaces) in these graphs; a-type nodes, which are dead-end
spaces (only one connection), b-type, which are nodes with two connections that
connect the root area of the graph with a tree sub-structure, c-type, which lie on
a single ring of nodes, and d-type nodes, which lie on two or more rings. These
types are interesting in that they can be used to determine which type of room
a space can be used for. For example, a-type spaces are generally private rooms,
since they have only one entrance and thus the only movement through them
is with the purpose of entering, leaving, or working in the room, not passing
through.

2.2.2 A Pattern Language

In A Pattern Language [Alexander et al., 1977], Alexander et al have compiled
a collection of design patterns, which are descriptions of how to best approach
certain situations in architecture. It is interesting to note that some patterns
correspond to findings in Space Syntax analysis, such as the Intimacy Gradient
pattern which suggest a placement of rooms according to their privacy level.
This means that bedrooms should be placed ’deeper’ in an apartment than a
living room or hallway, if possible. Different kinds of rooms in an office building
can be arranged in a similar manner, with reception area, meeting rooms, and
private offices placed at increasing depth.

However, many patterns in A Pattern Language are more specific to a par-
ticular culture and function (mainly North American homes), and thus are not
directly applicable in a system attempting general building or interior genera-
tion. Also, in A Pattern Language, Alexander et al attempts to describe best
practices, which are not often followed in built architecture. This can make
it counter-productive to implement a system following these patterns, as the
results would more resemble an ideal spatial configuration (according to the
authors) than an actual building.

2.2. ARCHITECTURAL THEORY 7

S
HH

VAL

Figure 2.1: Example of different room configurations and their justified graphs.

8 CHAPTER 2. THEORY

2.2.3 S-Spaces

In their study of interior wall placement, Peponis et al (1997) found that interior
building walls usually lie along lines defined by features of the outer walls and
inner load-bearing walls. Such features include windows, doors and corners. If
lines are drawn perpendicular to the wall from all corners as well as from the
walls between windows and doors, the result is a line network creating areas
called S-Spaces. Note that if the walls are at right angles, the lines drawn from
the corners will usually coincide with another wall (see figure 2.2a). If the walls
are not at right angles, there will sometimes be S-Space lines that lie at a very
low angle to a wall, making them unsuitable for wall placement (see figure 2.2
b).

The S-Space line network will thus represent natural positions for placement
of interior walls. In this thesis, a slight extension of this approach is used to
ensure that the walls are placed in positions that feel realistic. The extension
that is used means that any wall that is too long and not divided by an S-Space
line will be divided by an extra line. This is to avoid the unwanted situation
where all the S-Space lines go in the same direction in an apartment (see figure
2.3).

2.3 Voronoi Diagrams

The basic idea of a voronoi diagram is that you have a set of seeds (positions,
possibly associated with weights) on a plane and you want to partition the plane
into voronoi cells, with one cell per seed. The cell associated with a specific seed
is defined as all points for which the distance to the seed is less than the distance
to all other seeds, as measured by some definition of distance. Another way to
describe it is that the demarkation lines (the cell walls) lie along lines with equal
distance to the two closest seeds. In the basic case, distance D is measured as
the standard Euclidian distance (figure 2.4 a). With Az and Ay being the
distance along the x- and y-axis respectively between a location on the plane
and a seed, Euclidean distance is defined as:

D = +/Ax? + Ay?

This generates a pattern of straight voronoi cell walls. It is, however, possible to
define distance in a number of different ways, some of the common ones being
Manhattan distance (figure 2.4 b),

D=Az+ Ay

multiplicatively weighted Euclidean distance (figure 2.4 ¢) with a different weight
k; for each seed i (if all weights k; are the same, this is the same as the standard
Euclidean distance),

D = k;\/Ax?2 + Ay?

and the supremum metric (figure 2.4 d),

D— Az, Az > Ay
Ay, Az <Ay

2.3. VORONOI DIAGRAMS 9

each one giving quite different patterns for the same set of seeds. It is even
possible to define distance in ways so that some seeds will not, in fact, lie inside
their corresponding voronoi cells. It is also quite possible to extend the theory
to three or more dimensions. For the purposes of this thesis, however, it is
only necessary to consider the Euclidean definitions of distance (weighted and
non-weighted), and two dimensions is all that is required. Areas where voronoi
structures arise in nature include such wildly different things as soap bubbles,
spider webs, cell growth and galaxy cluster formations.

10 CHAPTER 2. THEORY

il
il

l
il

il }y /_
A

il

1

(a) (b)

Figure 2.2: Example of S-Space networks

— o — @ — | . r— | 7 |

(a) (b)

Figure 2.3: An S-Space skeleton without the added lines (a) and with the added
lines (b)

2.3. VORONOI DIAGRAMS 11

, 43
49

46

A~ 41

N - // C

Figure 2.4:
Examples of Voronoi diagrams: a) Regular Euclidean distance, b) Manhattan
distance, ¢) Multiplicatively weighted (numbers represent weights), d) Supre-
mum metric

12

CHAPTER 2. THEORY

Chapter 3

Developed Algorithm

3.1 Overview

The different stages of the algorithm developed are designed to be modular,
so that for example different subdivision algorithms can be used in different
buildings, or even hierarchically at different levels of the same building. Figure
3.1 shows a high-level overview of how the algorithm operates. The following
stages make up the algorithm:

Input Data: This is the initial information that is passed to the algorithm
from the previous stage (be it hand-made or generated).

Parameters: Parameters are used to control the result of the algorithm in
variety of ways, ranging from corridor width to which types of regions and rooms
the building should contain.

Building Skeleton: The building skeleton is generated from the input data to
facilitate analysis of the building shape, as well as construction of the internal
transitions areas (such as corridors).

Transition Area: After the skeleton has been built the corridors within the
building are placed. This is the Transition Area used to gain access to all parts
of the interior.

Regions: The regions making up the maximum continuous areas are created
from the input data and the created transition area, and used for further sub-
region division.

Sub-Regions: Sub-regions are created from the maximal regions and repre-
sent the boundaries of a collection of rooms (in this case apartments).

Room Walls: The room walls are built using a hybrid weighted pseudo-
Voronoi/S-Space algorithm, where the cell boundaries of a Voronoi diagram are
used to select suitable S-Space edges for walls.

Rooms: The rooms are built from the room walls. During this process a
graph of potential neighbouring rooms is also constructed, which is then used
to allocate room types (from the given parameters) and place doors between
some of the rooms.

Geometry: In the final step of the algorithm, the spatial hierarchy con-
structed is traversed and walls and entrypoints used to construct the 3D mesh
of the interior.

13

14 CHAPTER 3. DEVELOPED ALGORITHM

3.2 Input Data

One of the requirements for the algorithm is that it should take an already
existing exterior as input, rather than creating the exterior as part of the process.
This is a large difference to some of the cited previous work, and it is motivated
by the fact that the existing city-generation engines produce hollow building
shells, which need only be ’filled’ with an interior if the viewing position is
inside or close by. Further, the creation of an empty exterior does not require
extra data and processing time, which would be required if the exterior was
created from the interior.

As no generated buildings were available to extract the required data from
directly, assumptions had to be made about the input data that could be ex-
pected. Representing a building exterior requires at least the following data for
each floor:

e The outer wall, or shape of the structure (represented by a polygon).
e The positions and sizes of any windows and doors.
e The height of the floor (which is required when constructing geometry).

e The thickness of the outer wall.

Because of the lack of input data specification, the decision was made to use
only this minimum data set.

Additionally, the algorithm can be modified through a number of parameters,
such as region types, room types, and corridor width.

3.3 Building Skeleton

The first part of the algorithm produces a skeleton for the outside wall polygon
of the building. The basic idea for creating a skeleton is to push all walls inwards
at a constant rate and create a skeleton edge where two walls meet [Felkel and
Obdrzalek, 1998]. This results in a structure that lets the algorithm analyze
the shape of the building and determine if there should be inner corridors in the
house and where they should be placed (see figure 3.5).

The actual algorithm which is used for creating this skeleton is a slightly
modified version of the one used by Felkel and Obdrzalek (1998). Their algo-
rithm loops over the vertices whereas the one described here loop over the skele-
ton edges. This means they have to treat different types of skeleton intersections
differently, while the algorithm used here is able to treat all intersections the
same way. However, their algorithm can handle polygons with "holes", which
the one used here cannot. This functionality was not required for this project,
so the decision was made to use the method that was simpler to implement.
The simplified algorithm for creating the building skeleton is as follows:

1. From each corner of the house, create a skeleton edge at equal angles
to both corresponding outer walls (see figure 3.2). Each skeleton edge is
associated with the two walls defining its direction.

3.4. TRANSITION AREA 15

2. Find all intersections between skeleton edges that share an associated wall
and lie inside the building (see figure 3.3). The intersection is associated
with the shared wall.

3. From those intersections, choose the one closest to its associated wall. Cre-
ate a new skeleton edge originating from this intersection, corresponding
to the two walls that the parent skeleton edges did not have in common
(see figure 3.4).

4. Repeat steps 2 and 3 until only one skeleton edge remain that has not
intersected another skeleton edge. The last edge will simply be the root of
the skeleton tree. It will not have any corresponding walls, and so will be
of length zero. The root will be placed at the deepest point of the house
in the sense that it is the point that is the furthest away from any outer
wall (see figure 3.5).

5. Attach all doors to the skeleton by creating skeleton edges perpendicular
to the doors and attaching these to the closest intersection point with the
skeleton (see figure 3.6).

3.4 Transition Area

Looking at the skeleton, it is simple to determine if there is a need for inner
corridors in the current building. If the distance from the root node to the
closest wall is big enough, corridors are needed to minimize the number of
rooms without windows.

If corridors are needed, the skeleton tree is traversed recursively starting at
the root, placing corridors along the edges of the skeleton if:

e the skeleton edge is far enough from the closest wall (see figure 3.7 a)
e there is a door attached to the skeleton edge (see figure 3.7 b),
or

e the recursive traversal returns corridors from skeleton edges further down
in the skeleton tree.

This yields a corridor network with access to all parts of the building as well as
the outside (see figure 3.8).

3.4.1 Vertical access areas

After the corridor wall has been built, and if the current floor is the entry level
floor, vertical access areas (VAA) are added. These are vertical volumes of space
which are used to reach higher floors, such as staircases and elevator shafts. The
placement of these is done to allow access to floors other than the entry level.
For each door in the exterior wall:

1. Starting at the door, find the first skeleton segment in the corridor that is
long enough to place a VAA at. This is a potential position for placement
of a VAA.

16

Input
Data

- Walls

- Windows

- Doors

- Floor height

- Reserved
areas

CHAPTER 3. DEVELOPED ALGORITHM

Parameters
- Region Types
- Room Types

¥

o

Subdivision Room
Walls

S/

Building [:> Transition
Skeleton Area

N

—

U-0-0

Figure 3.1: Algorithm overview: Input data is used to create a subdivided
interior space, the regions of which can then be further divided or have room
walls inserted. Following this, the actual rooms are built and allocated types
according to the provided parameters, and finally the geometry is constructed.

Figure 3.2: Starting skeleton edges with associated walls marked.

3.4. TRANSITION AREA

Figure 3.3: Skeleton edge intersections with associated walls marked.

Figure 3.4: New skeleton edge created, with associated walls marked.

Figure 3.5: Skeleton with root marked (before doors have been attached).

17

18 CHAPTER 3. DEVELOPED ALGORITHM

==

Figure 3.6: Skeleton with doors attached.

:

(a) (b)

Figure 3.7: Corridor creation due to being far enough from the walls (a) and a
door being present (b).

3.5. REGIONS 19

2. If the potential position is too close to another VAA, continue with next
door.

3. Add a VAA at the current position.

4. Merge all VAAs with the current corridor (see figure 3.9).

3.5 Regions

After the creation of corridors, the remaining space is split into maximum con-
nected areas, each with a continuous boundary. These are the largest regions
which can be populated with rooms or further sub-regions, and are the spaces
made up from the initial interior space split by the generated corridors. The
entry-level floors in figure 3.10 a-c result in several separate regions each. As can
be seen, the number of regions correspond to the number of doors on entry-level
floors. Other floors (figure 3.10 d) require an artificial split wall to be added in
order to get a maximal region without holes.
The algorithm for creating maximal regions is executed as follows:

1. Create a list of intersections between the transition area and outer wall. If
there are no intersections, a splitting wall is inserted, making the minimum
number of intersections two.

2. Create a new region.

3. Start on an external wall segment with intersections, and add a wall seg-
ment part from the last intersection to the end point.

4. Continue adding wall segments from the outer wall until encountering the
next intersection.

5. Start on the corridor wall segment which intersected at the last intersec-
tion, and add segments of the corridor wall until returning to the first
point in the region wall.

6. Repeat steps 2-5 until all regions have been built (the number of regions
is the number of intersections divided by 2, since each region is defined by
two intersection points between the outside wall and the corridor wall).

3.6 Sub-regions (Apartments)

When the regions have been created, they are further subdivided into sub-

regions (in this case apartments). For apartments, it is important to make sure

that each one has at least one window, windowless apartments being very rare.
The algorithm which is used for creating sub-regions is as follows:

1. Create a wall from between the first two windows to the corridor. The
windows are ordered counterclockwise around the wall of the region.

2. If the created sub-region is too small, do step 1 again, going one window
forwards.

20

CHAPTER 3. DEVELOPED ALGORITHM

Figure 3.8: Corridor before staircase attachment

Figure 3.9: Corridor after staircase attachment

3.7. ROOM WALLS 21

R £

|

I

I

I

| |

1 1

a b C d

Figure 3.10: Region division for different floors: a) a single corridor segment
between two opposite doors create two regions, b) a more complex corridor, but
still two regions, c) three doors separate the interior space into three regions, d)
a floor without doors results in a single region

3. If this creates a large enough sub-region, leave it as it is.

4. Continue adding sub-regions this way until all the space has been assigned
to a sub-region (see figure 3.12).

Of course, there are also some special cases to take care of:

e Make sure sub-regions around corridor ends ("endcap" sub-regions) doesn’t
create walls along the entire length of the corridor (see figure 3.13).

e If the last sub-region of a region is too small, merge it with the previous
sub-region created.

e If the whole region is too small, create an apartment out of the whole
region.

e If the region contains no windows, no apartment will be created.

When the apartments have been created, a door is placed between each apart-
ment and the corridor. These doors cannot be placed earlier, since it is not
known where the apartments are which would make it hard to ensure that each
apartment actually gets a door to the corridor. This means that the sub-region
creation has to be done, even if only a view of the corridor is required, since
doors need to be correctly placed in the corridor.

In the algorithm presented here, doors can be placed on corridor walls at
either end of the wall or in the middle of the wall, to account for a reasonable
amount of different possible positions without having to handle too much data
(see figure 3.11). For each such position, the distance from that position to each
window is summed up. The door is then placed at the position with the highest
such sum. This usually leads to a door far away from all windows, which is
good since hallways are perfectly acceptable even without windows.

3.7 Room Walls

With sub-regions defined, the actual rooms within them should be created. To
do this, a two-part algorithm is used. The first part involves creating a pseudo-
voronoi diagram. The problem here lies in the fact that a non-weighted voronoi
diagram does not account for different room sizes. However, any true weighted
voronoi diagram will have curved lines between the voronoi cells, and that is far
more difficult to handle than straight lines. A non-weighted voronoi diagram

22 CHAPTER 3. DEVELOPED ALGORITHM

on the other hand would not allow the specification of different weights for the
seeds, which would lead to very similarly sized rooms regardless of purpose.

The method used here creates an approximate weighted voronoi diagram
with straight cell walls. This is accomplished in the following way:

1. Create seeds at each window and the apartment door with weights accord-
ing to desired room sizes.

2. Create as many more seeds as necessary, again with weights according
to desired room sizes (see figure 3.15). In most cases, one room will be
created for each seed. The exception is when a room becomes too small,
in which case it will be merged with a larger room.

3. Repeat steps 4-9 for each seed, disregarding seeds that has already got a
voronoi cell defined. Use the polygon defined by the sub-region walls as
the starting area to be divided.

4. Choose the seed that is the furthest from all the other seeds. This is
to ensure that when the voronoi region for the chosen seed is removed,
the remaining area is continuous. To find the wanted seed, sum up the
squared distance between a seed and all other seeds. Choose the seed with
the highest such sum.

5. For each other seed, find the weighted point between it and the current
seed. This point is found at a distance D = kl’fﬁkQ v/ Az2 + Ay? from the
current seed, where k; is the weight of the current seed, ko is the weight
of the other seed, and Az and Ay is the distance between the seeds along

the x-axis and the y-axis, respectively.

6. Create a cutoff line at a right angle to the line between the two seeds (see
figure 3.16). The cutoff line should pass through the weighted point form
step 4.

7. For each cutoff line, cut away the part of the area that is on the other side
of the cutoff line from the seed (see figure 3.17). This will create a voronoi
region for the seed.

8. Add the walls of the voronoi region to the voronoi diagram.

9. Remove the voronoi region from the area to be divided, using only the
remainder for later iterations.

This creates a voronoiesque diagram (see figure 3.18) that is somewhat de-
pendent on the order in which the seeds are considered, but this is not really a
problem, since it is not critical that the voronoi diagram is exactly correct. This
is because the voronoi diagram will only be used as a starting approximation of
where the final walls should be. It is necessary to make sure that the seeds are
traversed in the same order every time, or the same house would not look the
same if created again. On the other hand, this is done anyway, since seeds are
chosen in a predictable way so that the remainder is a simple polygon.

The voronoiesque diagram has straight, but not well-aligned, cell walls,
which brings us to the second part of the room creation algorithm.

3.8. ROOM TYPE ALLOCATION AND ENTRYPOINTS 23

The voronoi cell walls should now be aligned so that they are at mainly right
angles to the apartment walls (or at least close to right angles). Rooms with
difficult to use areas (for instance long, very narrow passages created by walls
being too close to each other) and too many corners should also be avoided. Most
rooms should have four corners (usually giving a roughly rectangular room), but
L-shaped rooms with 6 corners are perfectly acceptable, as long as the extra part
of the room isn’t too small. This is usually not a problem in a house where the
outer walls are at right angles to begin with, but when this isn’t the case, some
lenience is required when deciding what shapes are acceptable.

To accomplish this alignment, an S-Space wall skeleton is created. To make
sure the resolution is high enough, some extra walls are added to the S-Space
wall skeleton where there are have too large gaps. From the S-Space skeleton,
walls are selected that correspond as well as possible to the voronoi cell walls.
More specifically, this is done in the following manner (see figure 3.19):

1. For each voronoi cell wall, find all combinations of wall segments from the
S-Space skeleton on which you could project the entire voronoi cell wall.
A combination in this case is a set of connected wall segments in the same
direction.

2. If there are several combinations that are at an angle lower than a specific
threshold, choose from among them the one that lies closest to the voronoi
cell wall.

3. Otherwise, choose the combination that is at the least angle to the voronoi
cell wall.

This algorithm gives us rooms with walls placed in realistic places, while still
maintaining much of the weights from the voronoi diagram (see figure 3.20).

3.8 Room Type Allocation and Entrypoints

When the room walls are created for an apartment, they are used to build the
individual rooms. These are then connected to each other through entrypoints
(doors), and allocated a room type starting with a room which is connected to
the transition area. Entrypoints between rooms are placed in a way so that the
useable space in each room is kept high [Alexander et al., 1977] (see figure 3.21).

When constructing rooms from the wall skeleton, a list of neighbours is added
to each room. This way, a complete graph with all potential doorways between
rooms is built as part of the process. This graph can then be used to classify
rooms according to their depth and number of potential access points, using the
a,b,c,d-types defined by Hillier (see section 2.2.1). Rooms are then given a type
from those given as parameters, for apartments these can be hallway, kitchen,
living room, etc.

CHAPTER 3. DEVELOPED ALGORITHM

— — —

Figure 3.11: Sub-regions with possible apartment door positions marked

— —r T —r —

— — —

Figure 3.12: House with apartments created

Figure 3.13: Illustration of “endcap” apartment

3.8. ROOM TYPE ALLOCATION AND ENTRYPOINTS 25

Figure 3.14: Placement of walls between rooms

e

Figure 3.15: Sample apartment with voronoi seeds marked by X.

-

Figure 3.16: Voronoi cutoff lines for first cutoff step. Current seed marked by a
ring.

5

Figure 3.17: First voronoi region created.

26 CHAPTER 3. DEVELOPED ALGORITHM

e

Figure 3.18: All voronoi regions created.

e

Figure 3.19: Voronoi regions and S-Space skeleton superimposed, with S-Space
skeleton as dashed lines.

Figure 3.20: The completed apartment.

3.8. ROOM TYPE ALLOCATION AND ENTRYPOINTS 27

I
\P
a b c
Y
N
d e f

Figure 3.21: Illustration of useable area for different door configurations: The
gray regions are areas which lie on the route between two doors, and is thus
impractical to use for anything other than movement.

In the first row: a) two doors placed in the middle of opposite walls cause
a division of the room into two halves, b) three doors placed in the middle
of three different walls cause hard-to-furnish triangular areas, c) two doors on
neighbouring walls cause a cutoff of an unnecessarily large area.

Second row: d-f) show how moving the doors in the rooms of a-c) can drastically
increase useable space.

28

CHAPTER 3. DEVELOPED ALGORITHM

Chapter 4

Prototype Implementation

4.1 Initial Considerations

To get an environment suitable for fast implementation and testing of the algo-
rithm, the choice was made to use C++ in conjunction with Lua [Ierusalimschy
et al., 2007], which is a scripting language used in a wide range of applications.
This enabled testing of changes without restarting the main application, which
made the turnaround time very short. The main disadvantages with this were
that performance was probably considerably lower than it would have been if
the whole algorithm had been implemented purely in C++, and that there was
no way of stress testing the algorithm under any kind of real circumstances.
Another disadvantage is that if the algorithm will ever actually be used, it will
have to be reimplemented from scratch.

An additional goal with the prototype was to allow a graphical representation
of the results of the implemented algorithm, as this makes it easier to spot flaws
and create visual presentations. As this was a one time implementation that
would not require extensive updates, the graphical portion of the application
was implemented in C++.

Details of the application design are available in Appendix A.

4.2 Input Data

The input data (as described above) is parsed from XML files containing simple
text-based descriptions of the exterior wall, windows and doors, and other data
such as floor height and corridor width.

A similar approach is also used for algorithm parameters, which include room
and region type definitions. These are organized so that a region type contains
a list of names of room types that are valid within such a region. They also
contain information about which of these rooms can be used as entrypoint room
for that region type, since a region typically has a specific hallway or similar
space.

29

30 CHAPTER 4. PROTOTYPE IMPLEMENTATION

4.3 User Interface

The user interface for the prototype application has two modes (or views):

e First, a two-dimensional view of the generated floor plan, with options
to show or hide various layers and loading new building files. Here, the
user may also check any information about the generation process in an
information panel, as well as click on apartments to generate the rooms
inside them (figure 4.1).

e Second, a three-dimensional view of the generated geometry where the
user can navigate using keyboard and mouse (figure 4.2).

The user can switch between these modes at any time.

4.4 Script Interface

The prototype application uses the same stages described in chapter3, but di-
vided into two parts:

e The initial stages (parsing input data, creating transition areas and re-
gions) are automatically executed when the user loads a new file.

e Creation of rooms and steps after this are done as a response to user
interaction. This allows the user to decide when to generate an apartment.

4.5 Results

The algorithm as it stands works reasonably well as long as the building exterior
is not too irregular. If the outer walls are at right angles to each other, the result
is usually quite realistic. This may be due to the fact that the algorithm is not
limited to rectangular rooms, as well as to the use of voronoi diagrams to get
weighted room sizes, which appears to be a unique solution.

It is possible to generate the floor plan of any given apartment without gen-
erating the floor plans of any other apartment, which means that you don’t have
to process any more than you absolutely have to - just generate the apartments
the player actually enters. It is also possible to have the algorithm disregard
certain areas inside the building. This is mainly useful for hand-designed ar-
eas (perhaps story related content in a specific apartment) and stairwells on
upper floors (since the stairwells are generated on the ground floor and simply
propagated through the other floors).

The algorithm sometimes return undesirable floor plans when the outer walls
are not at right angles to each other (see figure 4.3). This is due to the fact
that some of the S-Spaces have the same angles as the outside walls. One of the
post-processing steps tries to clean up such irregularities as much as possible,
but there are cases where it does not help. Further testing and tuning is required
to minimize this problem.

Additional results are shown in Appendix B.

4.5. RESULTS 31

Available limitations files Render Options

Show outer walls

1
Inodoors
2

Show doors

2_fixed
3 dows
3_mod
4

o Show corridors
5_fixed

complex Show regions
cutwedge
H

keleton

Show apartments

internal
rectangle
reqular

e

Show rooms

Infermation Panel

Mouse position (screen): (943, 566)

Mouse position (world): (40.150001525879. 11.800001144409)

Figure 4.1: Prototype application user interface (floor plan mode)

Figure 4.2: Prototype application user interface (walkthrough mode)

32

CHAPTER 4. PROTOTYPE IMPLEMENTATION

Figure 4.3: Example of building with large angles between wall segments

Chapter 5

Discussion

Looking at the work that has been made earlier in this field, there have been
close to nothing like this thesis made before. That is to say, most other re-
searchers have either worked with severely more limited computing power (due
to computers being slower during the 1980s than in 2007), or they tackled the
problem from another point of view. Bearing this in mind, we had very few
actual algorithms to build on. What we had was a lot of architectural analysis
and theory. Usually, though, this kind of theory isn’t very specific, but is rather
formulated in general terms, so applying it to our problem was very much a
question of interpretation. All of this meant that we had to design our own al-
gorithms pretty much from scratch, which of course meant a few missteps along
the way, along with quite a lot of work spent on algorithms that simply did
not work. The end result, though, looks (at least to our eyes) at least as good
and usually better than every other automatically generated floor plan we have
seen, especially when it comes to houses where the outer walls are not at right
angles to each other.

There is, of course, a lot of room for improvement. A lot of tuning has to
be done for the specific application the algorithm is going to be used with, and
it is probably possible to create more post-processing algorithms, especially for
houses with walls at non-right angles. What we have is a working starting point
for a more complete algorithm, which was the main goal from the beginning
of the project. We concentrated on residential houses that are large enough to
need inner corridors, since we considered that to be one of the hardest cases.
The reason to choose a hard case rather than to start with simple cases was
that a general solution that works in a hard case usually works in simpler cases
as well, and we wanted to make sure that the solution was viable in as many
cases as possible.

Most of the algorithm will probably work just as well for other types of build-
ings with the only necessary change being some different parameters specified.
However, some parts, notably the region generation and apartment placement,
may need to be exchanged. To facilitate swapping out of parts of the algorithm,
we designed it in a modular fashion. It should be quite easy to simply exchange
the parts you need and keep the rest.

One of the requirements for a floor plan generator is that it should be possible
to configure for a wide array of situations. For instance, you might want to
have a house with really small rooms and narrow corridors, or you might want a

33

34 CHAPTER 5. DISCUSSION

house with a lot of large open office space. Our algorithm does have some of that
configurability. It is possible to specify the least acceptable sizes of apartments
as well as wall segments. By changing the room requirements and limitations,
you can also make sure there aren’t any rooms that are too small. However, it
is hard to input any absolute limitations due to the multi-step algorithm and
the limits of the S-Space skeleton.

There is also the question of performance. Creating an algorithm that will
work in a real-time environment have been a consideration right from the start.
That said, it was never the goal of this thesis work to create the actual real time
application, but rather to make sure the algorithm we did create wouldn’t take
too much time. Using Lua didn’t allow for precise performance testing, but we
assumed that as long as the Lua version wasn’t too slow, performance when
converted to C++ probably wouldn’t be a problem. There are also quite a lot
of performance issues due to a lot of rewritten code - parts of the algorithm had
to be changed again and again, leading to suboptimal solutions in a number of
places. These issues can probably be overcome quite easily when transferring
the whole algorithm to C++, since it will then be possible to plan the code a
lot better in advance.

Chapter 6

Further Development

6.1 Improvements

The algorithm is not, and was never intended to be, the end solution to the
problem of generating interior spaces. It should be viewed as a starting point
for future work rather than a finished product. With this in mind, there are a
number of things that need improvements. The underlying algorithm is solid,
but the exact details of the implementation may need some changes. Possible
improvements include:

e Choose only S-Space walls from concave corners, or at least only from
corners with an angle larger than some value. This would alleviate the
issue with wedge-shaped rooms.

e Select S-Space segments that lie along the main direction of the apart-
ment (this could for example be defined by the most common direction of
the apartment walls). This could also alleviate the problem with wedge-
shaped rooms, but defining the main direction may not be an easy task.

e Prune the building skeleton before creating the corridors so it only con-
tains edges along which corridors should actually be created. This would
simplify and speed up the corridor construction, as well as the creation of
auxiliary data.

6.1.1 Rules and parameters

The prototype that resulted from this thesis uses a number of parameters for
modifying the results of the algorithm, but these are on a relatively low level.
Future development of high-level parameters as well as a higher level interface
for adjusting the structure of generated spaces would be beneficial.

6.1.2 Randomization

In addition to extended parameters, a more extensive use of seeded randomiza-
tion would allow for a much higher degree of variation, especially in the case of
many similar exteriors.

35

36 CHAPTER 6. FURTHER DEVELOPMENT

6.1.3 Performance

Since the current prototype was implemented in a mix of C++ and Lua code,
actual performance will be improved in a pure C++ implementation. Certain
algorithms can also be improved at the design level (such as graph traversal
in room wall construction). Some of the sub-algorithms used can also be re-
placed with more efficient but more complex versions (such as the triangulation
algorithm used for constructing floor and ceiling geometry).

6.2 Future Work

Part of our work on generation of interiors was to compile a list of interesting
areas for further study. There are a large number of paths that can be followed
from this initial work, but the following are those we have deemed would provide
the most valuable additions.

6.2.1 Integration with building generators

A number of issues can be avoided by considering the following when integrating
the interior generation with a system creating building exteriors:

e Quter door positioning depending on house shape: Placing outer doors in
the middle of a short wall, or at the end of a wall with a sharp angle could
make it impossible to generate a realistic (or even navigable) interior.

e Doors should be placed at least at a minimum distance (which corresponds
to the outer wall thickness plus half the corridor width) from a corner to
avoid interior walls being too thin or going outside the exterior wall.

e Staircase placement generated from outer window placement: If the ex-
terior has half-story offset windows as typically used in staircases, stairs
should be placed there instead of in the building interior.

6.2.2 Generalization to cover other building types

The scope of this thesis was limited to a particular building type in order to
restrict the problem to a manageable size. Future work in generalizing our
algorithms would be very valuable for any applications where varied building
types are required.

6.2.3 Generation of auxiliary data

One of the largest positive aspects of procedural interiors as we see it is the
possibility of simple and efficient generation of additional data as part of the
construction process. This can include pathfinding graphs, occlusion culling
information, or zone division for lighting algorithms.

6.2. FUTURE WORK 37

6.2.4 Automatic placement of furniture and decorative
items

A large part of the experience of an interior space is how it is furnished and
decorated. A project looking at how to select (or even generate) appropriate
furniture and then place it in a natural way would be invaluable to a complete
procedural generation of interiors. A number of things that are likely to be of
particular interest are:

e Using the generated room layouts to place furniture and other items in a
realistic-looking manner.

e Using the useable areas of a room (the areas not required for movement)
defined by doors as a valid area for placing furniture.

e Consider the tradeoff between the realism of individual furnishing and
performance gain of a small number of furniture types.

e Using model synthesis approaches to generate varying furniture [Merrell,
2007].

6.2.5 Integration with level design tools

Integration of a generalized algorithm with existing level design and modeling
applications would potentially provide a large time-saving feature for content
creation, as level designers can get a starting point for an entire building at the
touch of a button.

6.2.6 Movement and space in simulated versus real inte-
rior environments

Another interesting area which is related to achieving quality results with any
interior generation algorithm is the study of how movement differ between real-
world and virtual buildings. Questions of particular interest are:

e Do virtual environments generally require more space due to constraints
in movement control?

e How are space requirements affected by camera perspective? Compare,
for example, interior spaces in existing third person (e.g. Max Payne) and
first person (e.g. Half-Life) games.

Recent work of interest include articles in the field of Spatial Cognition [Breme-
nUniversity, 2008] and on Space Syntax.

6.2.7 Automatic texturing of interiors

Applying textures to the generated interior in a convincing way is important
to get convincing spaces. Also, studying how textures and color schemes affect
viewers will be vital in order to achieve the goal of high-level descriptions of
space properties. Areas of interest include:

38

CHAPTER 6. FURTHER DEVELOPMENT

e Choosing or generating textures based on the type of building and desired
mood of a region.

o Consulting studies on the effects of properties such as color, brightness
and patterns on how a space is experienced.

Bibliography

Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pattern Lan-
guage: Towns, Buildings, Construction. Oxford University Press, 1977.

P. J. Birch, S. P. Browne, V. J. Jennings, A. M. Day, and D. B. Arnold. Rapid
procedural-modelling of architectural structures. In VAST ’01: Proceedings
of the 2001 conference on Virtual reality, archeology, and cultural heritage,
pages 187-196. ACM, 2001. doi: http://doi.acm.org/10.1145/584993.585023.

David Braben and Ian Bell. Elite. http://www.reference.com/browse/wiki/
Elite_(video_game), 1984. URL http://www.reference.com/browse/
wiki/Elite_(video_game). Accessed on December 19, 2007.

BremenUniversity. The spatial cognition website. http://www.
spatial-cognition.de/, 2008. URL http://www.spatial-cognition.
de/. Accessed on January 11, 2008.

C. Brenner. Towards fully automatic generation of city models. International
Archives of Photogrammetry and Remote Sensing, 33, Part B3:85-92, July
16-23 2000.

Petr Felkel and Stepan Obdrzalek. Straight skeleton implementation. In Las-
zl6 Szirmay Kalos, editor, 14th Spring Conference on Computer Graphics,
pages 210-218, 1998.

P. A. Flack, J. Willmott, S. P. Browne, D. B. Arnold, and A. M. Day. Scene
assembly for large scale urban reconstructions. In VAST ’01: Proceedings
of the 2001 conference on Virtual reality, archeology, and cultural heritage,
pages 227-234. ACM, 2001. doi: http://doi.acm.org/10.1145/584993.585029.

Per Galle. An algorithm for exhaustive generation of building floor plans.
Communications of the ACM, 24(12):813-825, December 1981. doi: http:
//doi.acm.org/10.1145/358800.358804.

Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geoff Leach. Real-time pro-
cedural generation of ‘pseudo infinite’ cities. In GRAPHITE ’03: Proceedings
of the 1st international conference on Computer graphics and interactive tech-
niques in Australasia and South East Asia, pages 87—, New York, NY, USA,
2003. ACM, ACM Press. ISBN 1581135785. doi: 10.1145/604471.604490.
URL http://portal.acm.org/citation.cfm?id=604490.

Evan Hahn, Prosenjit Bose, and Anthony Whitehead. Persistent realtime build-
ing interior generation. In Sandbox Symposium 2006, pages 179-186. ACM,
2006.

39

40 BIBLIOGRAPHY

Bill Hillier. Space is the Machine: A Configurational Theory of Architecture.
Space Syntax, 2007 electronic edition, 2007.

Bill Hillier and Julienne Hanson. The Social Logic of Space. Cambridge Uni-
versity Press, 1984.

Roberto Ierusalimschy, Waldemar Celes, and Luiz Henrique de Figueiredo. The
lua scripting language. http://www.lua.org, 2007. URL http://www.lua.
org. Accessed on January 11, 2008.

Mathieu Larive and Veronique Gaildrat. Wall grammar for building genera-
tion. In GRAPHITE ’06: Proceedings of the 4th international conference on
Computer graphics and interactive techniques in Australasia and Southeast
Asia, pages 429-437. ACM, 2006. doi: http://doi.acm.org/10.1145/1174429.
1174501.

R. G. Laycock and A. M. Day. Automatically generating large urban environ-
ments based on the footprint data of buildings. In SM ’03: Proceedings of the
eighth ACM symposium on Solid modeling and applications, pages 346-351.
ACM, 2003. doi: http://doi.acm.org/10.1145/781606.781663.

Jess Martin. Algorithmic beauty of buildings - methods for procedural build-
ing generation. Master’s thesis, Trinity University, 2005. Computer Science
Honors Theses.

Paul Merrell. Example-based model synthesis. In I8D ’07: Proceedings of
the 2007 symposium on Interactive 8D graphics and games, pages 105-112,
New York, NY, USA, 2007. ACM. doi: http://doi.acm.org/10.1145/1230100.
1230119.

Pascal Miiller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
Procedural modeling of buildings. In ACM SIGRAPH 2006. ACM, 2006.

John Noel. Dynamic building plan generation. Master’s thesis, University of
Sheffield, 2003. Undergraduate project Dissertation, Department of Computer
Science.

Yoav I. H. Parish and Pascal Miiller. Procedural modeling of cities. In SIG-
GRAPH ’01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 301-308, New York, NY, USA, 2001. ACM.
ISBN 1-58113-374-X. doi: http://doi.acm.org/10.1145/383259.383292.

John Peponis, Jean Wineman, Mahbub Rashid, S Kim, and Sonit Bafna. On
the description of shape and spatial configuration inside buildings. In Space
Syntax First International Symposium, 1997.

Peter Wonka, Michael Wimmer, Francois Sillion, and William Ribarsky. Instant
architecture. ACM Transactions on Graphics, 22(4):669-677, july 2003. URL
http://artis.inrialpes.fr/Publications/2003/WWSR03. Proceeding.

Appendix A

Prototype Design

This appendix contains class diagrams describing the main classes used in the
prototype implementation.

inputdata

Limitations LimitationsLoader

-mE xternalvwall - - —
-mlnkernalwalls: Wallld, *] +loadifilename: string): Limitations
-mLinelist: Linelist
-mDoars: Opening[1..*]
-mindows: Opening[0..%]
-mFloorHeight
-miMinThickness
-mIrneralThickness
-mOuterwalThickness
-m3eed

+getExternalvwall)
+getMurnInternalialls(): int
+getInternaliall{inde:: int): wal
+getInternalialls()
+getMurDoars(): ink
+getDoor(index: int): Opening
+getDoors()
+getMurnttindows(): ink
+getwindowindex: int): Opening e DOpening
+getiwindows() -
+getFloorHeight(): float +W"?|th: float
+getMinThickness(): Float +h3|g_ht: Float

+getInnerwal Thickness(): float +position: Yertex
+getOuterwal Thickness(): float +wallsegment1: WallSegment
+getsesd)): int +wallSegmentz2: WallSegment
+addDoor)

+addwindow)

+setFloorHeight()

+setMinThickness()
+setinnerwallThickness(innerwallThickness: float)
+setouterWall Thickness{outerWwal Thickness: Float)
+setSeed{seed: ink)

¥ML specification:
limit ations,xsd

41

42

APPENDIX A. PROTOTYPE DESIGN

inkerior

SpaceManager

EnktryPoint

-mSpaces: Space
-mEnkryPoints: EntryPaink

+createSpace(): Space
+createTransitionAreal): TransitionArea
+createReqgion(): Region
+createFoom(): Room

+createEntryPoint{spacel: Space, spaceZ: Space, position: Yertex, width: Float, height: Float): EntrvPoint

+destroySpacelspace: Space)
+destroyEntryPoint{entryPoint: EntryPoint)

-spacel: Space
-spaces: Space
-position: Verkex
-width: float
-height: float

#EntryPoint{spacel: Space, spaceZ: Space, position: Yerkex)
+getSpacel): Space

+getSpacez(): Space

~+getPosition(): Yertex

+get'width(): int

~+getHeight(}: int

.~

Wall

-miallSegments: WallSegment[3..*]

+getMumSegrments(: int)

+getiwallsegmentdindex: int): WallSegment
+addallSegment{wallSegment: wallSegment)
+addwallSegrent{vl: Yertex, v2! Yertex)
+addwallSegmentFront{v1: Yertex, v2: Yertex)
+addwallSegmentAtIndexiv1: Vertex, v2: Yertex, index: int)
+removeWallSegmentiinde:: int)

Region

Space
-weall: wall
-entryPoints: EntryPoint[1,.%]
-type
-style
#Space()

+getwall: wal

~+getMumEntryPoinks(): ink
~+getEntryPoint(inde:: int): EntryPoink
~+getTypel): ink

~+getstylel): ink

+setvitall{wall: wall)

Wallsegment

+v1: Yertex
+v2: Yerkex
+label: int

?

SkeletonSegment

~+addEntryPoinkt{entryPoint: EntryPoint)
+setTypeltype: int)

+setShylelstyle: int)
“+removeEntryPoint{entryPoint: EntryPaint)

+regions: Region[0..*]
—+rooms: Room[0,.*]
+transitionAreas: TransitionAreal0,.1]

ﬂ_

il

TransitionArea

+Region()

+getMumTransitionAreas): int
~+getTransitionArealindesx: int): TransitionArea
~+getMumRegions(): ink

~+getRegionfinde:x: int): Region
~+getMumRooms{); int

~+getRoom{index: ink): Room
+addTransitionArealtransitionArea: TransitionArea)
+addRegion{region: Region)
+addRaom(room: Raom)
+removeRegion(region: Region)

+mR.ay: Ray

WallSkeleton

+mwallegment1: WalSegment

-m3keletonEdges: WwallskeletonEdge

wallskeletonEdge

+miallegmentz2: WallSegment
+mParent]: SkeletonSegment
+mParentz: SkeletonSegment
+miChild: SkeletonSegment
+mbDistanceToClosestwall: float

~+gethumSkeletonEdges(): int

+getskeletonEdgelinde:: int): WallSkeletonEdge
+addskeletonEdgeiwallvertexl: Yertex, wallvertexZ: Yertex, ray: Ray)
+removeskeletonEdgelindes: int)

+wallSegment
+ray

\

Skeleton

-mSkeletonSegments: SkeletonSegment[0..*]

+addSkeletonSegment{skeletonSegment: SkeletonSegment)
+getMurmSegrents(): int
+getskeletonSegment{index: int): SkeletonSegment

43

RegionType

+mMame: skring

+mSize: Range

“+mEntrypoints: RoomType[1..%]
~+mParameters: Parameter[0..*]
+mRegionRooms: RegionRoom

~+getMamel): string

+getSize(): Range
~+gethumEntrypoinks(): ink
+getEntrypoint(indes: ink): RoomType
+getMumRegionRooms(): ink
+getRegionRoom(index: int): RegionRoom
~+gethumParameters(): int
—+getParameter(index: int): Parameter
~+setMameiname: string)

+setSize(size: Range)
~+addEntrypoinkt{entrypoint: RoomType)
+addRegionRoomiregionRoom: RegionR.oom)
~+addParameter{parameter: Parameter)

patameters

Parameter

+name: string

| i alue: string —-—

RegionRoom

+roomType: FoomType
+required: int
+rmultiplicity: int

RoomType

+name: string

+size: Range

+struckuralConnection: StruckuralConnection
+specificConnections: SpecificConnection0..*]
+paramekers: Parameter[0,.*]

+getMame(): string

+getsized): Range

+getstructuralConnectiond): StructuralConnection
+getMumspecificCannections(): int
+getSpecificConnection{index: int): SpecificConnection
+getMumParameters(): int

+getParameter{index: int): Parameter

+sethameiname: skring)

+setSizelsize: Range)
+setstructuralConnection(struckuralConnection: StruckuralConneckion)
+addspecificConnectionispecificConnection: SpecificConnection)
+addParameter{parameker; Parameter)

RegionParameters

RoomParameters

StructuralConnection SpecificConnection

+regionTypes: RegionTvpe[1..%]

+roomTvpes: RoomType[1..*]

+neighbours: Range +roomType: RoomType

+getMumRegionTypes(): int
+getRegionTypelindex: int): RegionType
+addr egionType(RegionType regionType)

+getMurmPoomTypes(): ink
+getRoomTypefindex: int)

+getRoomTypefroomTypetame: string)

+windows: Fange +allowConnection: bool

#ML specification:
reqion_pararmeters, xsd

#ML specification:
roam_parareters, xsd

44

APPENDIX A. PROTOTYPE DESIGN

Appendix B

Additional Results

This appendix contains a collection of examples illustrating the results of ap-
plying the interior generation algorithm to a set of buildings.

45

46 APPENDIX B. ADDITIONAL RESULTS

Figure B.1: Result of running the algorithm on one sample irregular building

47

Figure B.2: Small building with only two doors, and with only one right angle

